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I. INTRODUCTION

Let C C~ C[a, b] be the space of real-valued continuous functions on
[a, b] with the uniform norm. When G is an N-dimensional Chebyshev
subspace of C, i.e., each / in C has a unique best approximation from G,
then the mapping from / in C to its unique best approximation from G is
continuous. When a space of functions in C is not a Chebyshev subspace the
question arises whether one can select for each / in C a best approximation
to f in such a way that this selection is continuous.

In this paper, we will characterize precisely when such a continuous
selection exists. Indeed, we show that there is a continuous selection for
spline functions if and only if the number of knots is smaller than or equal
to the order of the splines.

If G is a nonempty set from C, let

P(f) =~ Pr;(f) = {go E G: U - go= inf{i!f - g : g E G}}.

P(j) is the set of best approximations to/from G. P is a set-valued mapping
from C into 2G called the metric projection onto G. A continuous mapping
s from C into G is said to be a continuous selection for the metric projection P
(or, more briefly, continuous selection) if s(f) E P(j), for each/EO C.

A starting point for the study of the existence of continuous selections is
the weak Chebyshev subspaces of C. In this direction, we have shown [8]
that if G is a weak Chebyshev space of dimension N with the property that
each g E G has at most N distinct zeroes, then G admits a continuous selection.
In fact, the selection is quite simply: we take for each / E C the alternation
element (Definition 2.1) gf E G. The existence of an alternation element is
guaranteed in case G is weak Chebyshev by Jones and Karlovitz [3]. We have
shown [8] when each g E G has at most N distinct zeroes then gf is unique
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for each f In fact, the condition that each g has at most N distinct zeroes
is necessary and sufficient that gf be unique for all f

The prototypes of weak Chebyshev spaces are the spline spaces Sn,k'

where the splines are of degree n with k fixed knots. A spline s E Sn.k can
vanish identically on an interval. Hence the results of [8] are not applicable.

In the case that functions from G have zero intervals, there is only one
result in the literature guaranteeing the existence of continuous selections,
and that is the theorem for one-dimensional subspaces in C(X) given by
Lazar et al. [7, Proposition 2.6].

The question of the existence of continuous selections for N-dimensional
subspaces G (N > 1) with the property that functions in G may vanish on
intervals has not been treated in the literature.

Thl~ techniques of [8] do not apply directly because, in general, splines
admit more than one alternation element. However, it is possible by modi­
fying the approach in [8] and using some well-known results from spline
theory to construct continuous selections provided k ~ n + 1.

The construction of the selection is highly local and based on local alter­
nation elements, whose uniqueness is guaranteed by the condition k ~ n + 1.

For k > n + 1, we show the nonexistence of continuous selections for
Sn,k'

2. PRELIMINARIES

In this section, we will summarize some of the known results about weak
Chebyshev systems and splines that we will need to prove our characteri­
zation theorem. An important role in the construction of our selection is
played by alternation elements.

DEFINITION 2.1. Let G be an N-dimensional subspace of C[a, b].

If /E C[a, b], then g E P(f) is called an alternation element (A element)
for / if there exist N + 1 points a ~ X o < Xl < ... < Xv ~ b such that
E(_l)i(f_g)(Xi) ='/-gll, i = O, ... ,N, with E = ±1. The points
X o ,... , X N are called alternating extreme points of/ - g.

Jones and Karlovitz [3] have characterized the N-dimensional subspaces
G of C[a, b] such that each/in C[a, b] has at least one A element. The result is

THEOREM 2.1. G is weak Chebyshev if and only if for each / E C[a, b]
there exists at least one A element in P(f).

Recall that a subspace G is called weak Chebyshev if each g E G has at
most N - 1 changes of sign, i.e., there do not exist points a ~ X o < ... <
Xv b such that g(x;) . g(Xi+1) < 0, i = 0, ... , N - 1.
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We will establish in Section 3 a characterization when spline spaces have
a continuous selection. This can be accomplished even in the general context
of Chebyshevian splines. Let a = Xo < Xl < ... < XI. < Xk+l =, b be k
fixed knots in [a, b] and {wi}7~o be n + I positive functions in C[a, b] such
that Wi is in Cn--i[a, b], i = 0,... , n, n ~ I. Then

uo(X) = wo(x),

u](x) = wo(x) r wl(g]) dg] ,
a

x <, < 1

un(x) = H'o(X) f lI,](gl) f H'2(g2) ,.. r n ll'n(gn) dgn '" dgl
a a ~. a.

is said to be an extended complete Chebyshev system. We define

'wo(x) rH'MI) (2 H'2(g2) ... (-' H'n(gn) dgn ... dgl ,
<Pn(X, t) := f f -f

0, X :s:: t.

The class of the Chebyshevian spline functions is defined by Sn.h:(Xl , ... , XIJ :=-=
(uo ,... , Un , o/n(-, XI),· .. , o/n(-, x k»· The Chebyshevian splines form an
n + k + I-dimensional subspace of qa, b]. In the following we denote this
subspace simply by Sn.l" Each g E Sn.k is in Cn-l[a, b] and the restriction
of g to [Xi, Xi+l]' which we denote by g I[x ..r ,] , represents a generalized

, 'c
polynomial. If we define Wi(X):= i + I for each X E [a, b], i = 0, ... , n,
then Sn.k will be the class of the usual polynomial splines. For the proof of
our characterization we use some results from spline theory. First, we have
the following characterization of best approximations given by Rice [9]
and Schumaker [10].

THEOREM 2.2. A function go E Sn,k is a best approximation offE C[a, b]
if and only if f - go has n +.i + 1 alternating extreme points on some sub­
interval [Xi, Xi+']'

Rice [9] has in addition shown the existence of certain uniqueness intervals
for spline approximation.

THEOREM 2.3. Let go E S".k be a best approximation offE C[a, b] such
that f - go has n + .i + I alternating extreme points in [Xi, Xi+'], but does
not have n + I + 1 alternating extreme points in any subinterval [xr , Xr+l]

of [Xi' Xi+']. Then all best approximations off coincide on [x, , Xi+,)'

While the best approximation by splines is generally not unique, we have
the following sufficient condition for uniqueness given by Strauss [12].
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THEOREM 2.4. Let go E Sn,k be a best approximation of f E C[a, b] such
that f·- go has at least j + 1 alternating extreme points in each interval

(I) [a, Xj), (Xk-H1 , b],.i = 1'00" k,

(2) (Xi, Xi+Hn) C (a, b),.i :> °(k > n 1).

Then go is the unique best approximation of f
The next theorem gives a restricted interpolation property for splines

given by Karlin [4, p. 503].

THEOREM 2.5. Let Zi , ti , i = 1'00" r, be points such that

a ~ Zl < Z2 < < Zr ~ b,

a ~ t1 < t2 < < tr ~ b;

then

I
<pn(z~ , t1)

<Pn(zr , t1)

<Pn(Z~ , tr) I
: ;?: 0.

<Pn(zr, tr)

Strict inequality holds when (1) Z;.-n ..l < ti < Zi, i = 1'00" r. For i ~ n + 1,
the first inequality in (1) is omitted.

Remark 2.1. From Karlin and Studden [6, p. 3], and Theorem 2.5 it
follows that for arbitrary points t; , i = 1'00" r, with

the functions <Pn(x, t1),.00, <Pn(x, tr) span an r-dimensional weak Chebyshev
subspace of C[a, b].

According to Schumaker [11] for each g E Sn.k' which has only finitely
many distinct zeroes in [a, b], we count the zeroes in the following way
(notice that we only consider simple knots):

DEFINITION 2.2. Let g be a function in Sn.k which has only finitely many
distinct zeroes in [a, b]. If Z is a zero of g E Sn.k and Z is not a knot, then z
is said to be a zero ofmultiplicity r provided g(z) = g'(z) = ... = g(r-l'(z) = 0,
g(r)(z) =1= 0. If z is a knot, then we use the same count because ofg E Cn-l[a, b]
for r ~:;; n - 1. If z is a knot and g(z) = g'(z) = ... = g(n-ll(z) = 0, then
z is said to be a zero o.fmultiplicity n provided g(n-ll changes sign at z, and z
is said to be a zero ofmultiplicity n + 1 provided g(n-l1 does not change sign
at z. We define Z*( g) to be the number of the zeroes of g E Sn.k counting
multiplicities.

Schumaker [11] has estimated the number of zeroes a spline function in
Sn.k can possess. For our problem we need this result when g E Sn.k has only
finitely many distinct zeroes.
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THEOREM 2.6. If g EO S".I has only finitely many distinct zeroes then

Z*( g) n k.

We will prove a local uniqueness for A elements in S".k , using Theorem 2.7
[8] which counts the zeroes of a function gl - g'!. when gl and g~ are both
alternation elements.

THEOREM 2.7. Let G be an m-dimensional weak Chebyshev subspace
of C[a, b] and f EO C[a, b]. If gl , g2 EO P(f) are two alternation elements for
f E C[a, b], then at least one of the following is true:

(1) gl - g2 has at least m· I distinct zeroes in [a, b],

(2) gl - g2 has at least m 2 zeroes in [a, b].

In condition (2) we count zeroes in the following way:

A zero z of gl- g2 is said to be a simple zero if gl - g2 changes sign
at z or if z == a or z = b.

A zero z in (a, b) ofgl - g2 is said to be a double zero ifgl - g2 does not
change sign at z.

We are now in position to prove our Main Theorem.

3. CHARACTERIZATION THEOREM

THEOREM 3.1. There exists a continuous selection s: C[a, b] ---+ Sn.k for
P: C[a,b] ---+ 2sn .k ifandonlyifk ~ n -+ 1.

Proof

Part I. First we show the nonexistence of continuous selections in
the case k > n -+ I. This is done by constructing a function f and two
sequences U;//) and (f,n) in C[a, b] which converge to f with the following
properties:

Ps,j.f;,,) = {OJ and for each m.

Jt is easy to see that this precludes the existence of a continuous selection s,
since we would have s(f) = 0 because frn ---+ f and sU//J = 0, and s(f) =.= go
because f,n ---+ f and s(frn) = go. This would be a contradiction because
go cF O. Start with k fixed distinct knots a = X o < Xl < ... < Xk <
X k +1 = b and consider the interval [Xl' x n +2]. By Karlin [4, p. 524], there
exists a gin Sn.k such that

and
g(X) = 0

g(x) cF 0

if X EO [a, Xl] U [X n+2 , b]

if x EO (Xl' X//4-2)'
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g(X) > 0

Let go = Ii g 11 -

1 . g. By Curry and Schoenberg [2, Theorem I], go' has
exactly one zero X E (Xl' X n +2) and hence go has exactly one maximum
at X. (Tn the literature this function is called a B-spline.)

Construction off We construct a function f with Ilf[[ = 1. First,
define f(x l ) = I, f(X n+2) = -I, f(x) = 0. Next for each interval I of the
form [a, Xl], [X n+2 , X n +3],.", [Xk ,b], we require that f has exactly n + 2
alternating extreme points in I. We take Xl as an alternating extreme point
for la" Xl] and correspondingly X n +2 as one for [xn+2 , Xn-t 3]' Let {Zl , Z2 ,,,., z;\}
be the set of all these extreme points. Then, I f(zi)i = I, i = I, 2,,,., A.
Let f be linear on each [Zi' ZHl], except for [Xl' X n+2]' Here we define f
in the following way: Let f be linear in [Xl' x] and f(x) = go(x) - I for
x E [.i, x n+ 2 ]. This is the construction off Let us note a couple of properties
of f By Theorem 2.2 and the position of the alternating extreme points of
fit follows that 0, go E Ps (f). By Theorem 2.3, it even follows that all best

n.k

approximations of f vanish identically in [a, Xl] U [X"+2 ,b]. Note that in
the case k < n -!- I there does not exist such an interval [Xi' X Hn+1] C [Xl' X k ].

But by Theorem 2.5 for any interval [Xi' Xi+m+l], m < n there does not exist
a gin Sn,k , g ~ 0, such that

and
g(X) = °
g(X) =1= °

if X E [a, x;] U [Xi+"'+1' h]

for each x E (Xi, Xi+'" +1)'

Therefore the preceding method is not applicable when k :s:; n + I. Now
let Ii < Xl be the n -+ 1 alternating extreme point offin [a, xd and i > X n +2

the second alternating extreme point of fin [Xn.r2' Xn~3]'

Construction of the sequence (fm)' We define for sufficiently large m

fmCx) := f(x) ,

= I + go (Xl ++),
= 0,

= -I + go (X n+2- +),
= gO(X) - I,

= f(x),

X E [a, z]

, I
X = Xl _L -';1-

X=X

XE[i,h].

Let f", be linear in [z, Xl -+ (lIm)], [Xl + (lIm), x], [X"_2 - (lIm), 2].
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Construction of the sequence (lrn). We define for sufficiently large III

f~(x) = f(x), X E [a, z]

= I,

== 0,

go(X) _. I
- go(Xn+2 =-(l/m)) ,

X Xl
JJ1

X .\'

I,

= J(X),

1
x = X n+2 - til-

X E [,E, b].

Letfm be linear in [z, Xl -+- (11m)], [Xl + (11m), x], [xn +2 , (11m), i]. This
is the construction of the sequences Um) and (}",). Now, (f,n), (fill) C C[a, b]
andfm ~ j,!m ~ f From the fact that Ilfm II 'S. I and Theorem 2.2 we have
o is in Psn..cr...m)' SimilarlYI!m - go II ~ 1 and so Theorem 2.2 gives that
go is in Ps (1m). Notice that go is strictly monotone decreasing in [x, x n+,,].

'!I.k _ ..

By Theorem 2.4 it follows further that Psn)lrn) = {O} and Psn )ll11) {go}.
This proves the nonexistence of a continuous selection in the case k > n I.

Part 2. We will now show the existence of a continuous selection in the
case k ~ n -. I.

(I) Construction of the selection s: Cla, b] ~ Sn.A' Let f be in
Cla, b], go in Psn )]), and [Xl, XI H ] C [a, b] be some interval on which
all of the best approximations of f coincide. The existence of [x, , XI+1]

follows from Theorem 2.3.

(a) We first approximate f _. go in [Xl+1' b] by elements from
G1H : = <rPn(-, Xl+1),···, rPn(-, Xk) C Sn.k' According to Remark 2.1, G l+1

is a (k - I)-dimensional weak Chebyshev subspace of era, b].

Therefore, Theorem 2.1 guarantees the existence of an A element gi

in PG /+1(f - go) for which

If - go .- gi 1:[Xh,./i] ~ 11f - go - 0 I [Xl+1,b] ~ Ilf - go

So gOI gl is also in Psn)])'

(b) We will now show for approximation in [XI+1' b], any two
distinct A elements gI, g2 in PG/+/l- go) are the same on [X I +I , XI 12],

i.e., gl = g2 in [XIII' X/+2]' Assume to the contrary that gi ~ g2 in
[XI+1' Xl+ 2]' We will show that gl - g2 has no zero interval in ['Y/+1, b].
If gl - g2 has a zero interval then there exist I' - I points t l < ... < t'_1
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III some interval [xr , Xr+l] C [XI+2 , b] such that (gl - g2)(ti ) = 0,
i = ]1, ... , r - I. Since gl - g2 is in Gl+l

r

gl - g2 ]["l+1,Xr tl] (t i ) = I aA>n(t i , Xj) ,= 0,
j~l+!

i = 1, ... , r - I.

By Theorem 2.5 it follows that al+! = ... = ar = 0. This is a contradiction
to gl :1= g2 in [Xl+l , XI+2]. Therefore gl - g2 has no zero interval in [Xl+l , b]
and since gl - g2 is in Sn.k only finitely many zeroes. In particular
gl - g2 I[x J is in

l+l.b

Therefore by Theorem 2.6 it follows Z*( gl - g2) < n + k - 1 - 1 in
[Xl+l ,b]. Notice that gl - g2 has a zero of multiplicity n at Xl+l according
to Definition 2.2. If we count the zeroes of gl - g2 according to Theorem 2.7
gl- g2 has at most k - 1zeroes in [Xl+! , b]. Since gl and g2 are A elements in
PG'+1(f - go) it follows by Theorem 2.7 that gl - g2 fulfills at least one of
the following conditions: gl - g2 has at least k - 1+ I distinct zeroes in
[Xl+l: b], gl - g2 has at least k - 1+ 2 zeroes in [Xl+1 ,b]. This is a contra­
diction. Therefore gl = g2 in [Xl+l' XI+2]'

(c) We show: If go E Ps (f), go :1= go, and gl E PG (f - go)
n,k t+l

is A element for approximation in [Xl+1' b] then go + gl = go + gl in
(Xl+l , Xl+2]. Since go = go in [Xl' Xl+l], the function

X E [XI+1' b],
X E [a, Xl-a]

is in Gl+l'

The functions f - go - gl and f - go - gl = f - go - (-go + go + gl)

have k - 1+ I alternating extreme points in [x l+1 , b]. Since go is in Gl+l the
function gl = Cl - go is also in Gl+l and this function is an A element of
f - go by approximation in [XI+1' b]. Since according to (1 b) all of these
A elements coincide in [XI+1' Xl+2], we must have gl = -go + go + gl in
[XI+1 , XI+2], as desired.

(d) This method will be continued in [XI+2 ' b] in the following way.
We now approximate f - go - gl in [XI+2 ' b] by Gl +2 = <cPn(', XI+2),···,

cPn(', Xl,,) and by Theorem 2.1 we get an A element g2 in P
Gl

+
2
(f - go - gl)'

As in (lb), we have that all these A elements coincide in [Xl+2 ' XI+3 ] and as
in (Ic) we have that go + gl + g2 is independent of the choice of go and
go -+ gl in [XI+2 ' XI+ 3 ]. Also, we have that go -+ gl + g2 is in Ps (f). We

n.k

continue this method up to the last interval [Xk' b] and get a function
g = go + gl + ... + gk-l in Ps (f), which is independent of the choice of

n.k

go , go + gl '00', go + gl + .. , + gk-l-l .
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(e) Using the same kind of argument as in (c) and (d), we get a
function g = g-1 g-I+l -+ "', go in Ps (f) where for each i g--i

n,k

is an A element in PcU - g-Hl - ... - go) in [a. XI1 ,]. with
..... l~-l-l' '"

Gi = <cfnCx1 , .), .... cfnCx i , '). As before g is independent of the choice of
go, g-l + go ,... , g 1+1 "'- g-1 + go· Define now s(f) = g 1

g-l + go + gl +- ... J gk-l which is an element of Ps" k(f).

If we have a function g EO Sn.k which is zero on /1 c= ['::-1 • ::'2] and
12 = [Z3, Z4] with Z2 < Z3 then by Theorem 2.5 it follows that for k n I
g also vanishes on [Z2. Z3]. Therefore If := {x EO [a, b]: g(x) =~ g(x) for each
g, gE Ps (fn has to be an interval. Starting with an arbitrary interval

n.k

[Xl' Xl H ] C If therefore we get s(f) independent of the choice of

[XI' Xl H ] elf'

(2) We show that s is continuous. Assume to the contrary that s
is not continuous. Since Sn,k is finite dimensional there exists a function f
in era, b] and a sequence ([rn) in era, b] such that /,/1 --+ f and s(/'/I) --+ g,
g ci= s(f), g E Psn).f). Moreover, there are only a finite number of intervals
possible for If (If is defined above). Hence, we can require that there is an
interval I withmIfm n~ I for all m.

(a) We show first that there exists an interval [x p , X",i] which is
contained in I n If .

By Theorems 2.2 and 2.3 there exists a subsequence of Un,) which for
notational convenience we again denote by (f~,,) and an interval [X,. • XI' 'j] C I
such that/,,, - s([m) has n + j + I alternating extreme points

such that

E(_1)i (/,,, - s(.f~n))(z;rn)) = ,'J;n - s(f~,)I,

XI' }

i = 0, ... , 11 -1- j,

with E = ±1.
There exists a convergent subsequence of (z;rn)), i = 0, 11- j which

we again denote by (z;'")) such that limm~o: z)'/I) = Zi, i =c 0 n -: j.
It follows that

E(-1)i IJ - gil = E( --I)i lim iIf;/I- s(f~,)1
m--4'X.J

= lim ([rn(z;rn») - f(z;"'») + f(z;rn))
m-')~£J

- g(z;m») + g(z;m)) - s(fm)(z;"'»))

= lim ([m(z;m») - f(z;m»))
m~OO

+ lim ([(z;m») - g(z;m»))
m~oc

+ lim (g(z;m») - s([m)(z;m»))
m--'>CD

= ([(Zi) - g(Zi))' i = 0'00" n + j.
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Therefore f - g has n +- j +- I alternating extreme points in [xr , xr+j].
Thus, by Theorem 2.3 there exists an interval [xv, x v+;] C [xr , xr+j] on
which all best approximations off coincide. The interval [xv, XV+i] is con­
tained in I n If .

(b) According to (2a) there exists an interval [Xl, Xl+l] elf n I.
Since s is independent of the choice of such an interval, s(f) can also be
defined by starting with [Xl, Xl+l]' Therefore, s(f) = g-l +- ... +- go +- ... +
gk-l and s(fm) = g-l,m + .. , + gO,m + ... + gk-l,m' By choosing again
a subsequence if necessary we can require that there is for each i, a gi with
gi = limm...,,,,, gi,m and of course g = g-l + ." + go + ... + gk-l with
giEPG (f-go-"'-gi-l) for i=I, ...,k-1 and g-iEPC .x

l+z l+1-1

(f - g-i+1 - ... - go) for i = +1,... , +1.

In the construction of s(f), there is some freedom in the selection of the
functions gi' For example, go is a best approximation to f from Sn,k , etc.
We will now show that for each i gi can be taken as gi . This is done
by induction. We consider the case i ~ O. The case i < 0 is proved
similarly.

For i = 0, we have each go.rn is a best approximation to fm . Since (fm)
converges to f go = limm ...,,,,, gO,m is also a best approximation to f Hence,
we can take go = go in the definition of s(f).

Now suppose we know we can take gj = gj for 0 :S;.i < i with
i > O.

For each m gi,m is an A element to fm - (go,m -J- ,.. --t- gi-1,m) from
CHi in [Xl+i, b]. Hence taking limitsgi is an A element tof - (go --:-- +- gi-l)
in [XZ+i, b]. Now it follows from (I b), (Ic), (I d), and (Ie) that go +- + gi =

go +- ... +- gi in [Xl+i' XZ+i+1] and thus we can take gi =~ gi as desired by
induction hypothesis.

Now that we have shown that for each i gi can be taken as gi , we have that
s(f) == g. This is the desired contradiction and establishes the continuity
of s. This completes the proof of the Theorem.

Since the results used in the proof of this theorem are also valid for knots
with multiplicity less than n + I the characterization theorem is also true
in this case.

For those weak Chebyshev subspaces of C[a, b] such that eachfin C[a, b]
admits exactly one A element gf in P(f) we can define the continuous selection
s by s(f) = gf (see [8]).

It follows, however, by a result in [8] that a spline function in Sn.k generally
admits more than one A element. Here it would be natural to choose for
eachfin C[a, b] an A element gf in Ps (f) with certain characteristic proper-

n.k

ties and to show the continuity of this selection. This, however, was not
possible.
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